On finite abelian-by-nilpotent groups

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Lattices Generated by Finite Abelian Groups

This paper is devoted to the study of lattices generated by finite Abelian groups. Special species of such lattices arise in the exploration of elliptic curves over finite fields. In the case where the generating group is cyclic, they are also known as the Barnes lattices. It is shown that for every finite Abelian group with the exception of the cyclic group of order four these lattices have a ...

متن کامل

On non-normal non-abelian subgroups of finite groups

‎In this paper we prove that a finite group $G$ having at most three‎ ‎conjugacy classes of non-normal non-abelian proper subgroups is‎ ‎always solvable except for $Gcong{rm{A_5}}$‎, ‎which extends Theorem 3.3‎ ‎in [Some sufficient conditions on the number of‎ ‎non-abelian subgroups of a finite group to be solvable‎, ‎Acta Math‎. ‎Sinica (English Series) 27 (2011) 891--896.]‎. ‎Moreover‎, ‎we s...

متن کامل

On $m^{th}$-autocommutator subgroup of finite abelian groups

Let $G$ be a group and $Aut(G)$ be the group of automorphisms of‎ ‎$G$‎. ‎For any natural‎ number $m$‎, ‎the $m^{th}$-autocommutator subgroup of $G$ is defined‎ ‎as‎: ‎$$K_{m} (G)=langle[g,alpha_{1},ldots,alpha_{m}] |gin G‎,‎alpha_{1},ldots,alpha_{m}in Aut(G)rangle.$$‎ ‎In this paper‎, ‎we obtain the $m^{th}$-autocommutator subgroup of‎ ‎all finite abelian groups‎.

متن کامل

Fitting quotients of finitely presented abelian-by-nilpotent groups

We show that every finitely generated nilpotent group of class 2 occurs as the quotient of a finitely presented abelian-by-nilpotent group by its largest nilpotent normal subgroup.

متن کامل

on finite a-perfect abelian groups

‎let $g$ be a group and $a=aut(g)$ be the group of automorphisms of‎ ‎$g$‎. ‎then the element $[g,alpha]=g^{-1}alpha(g)$ is an‎ ‎autocommutator of $gin g$ and $alphain a$‎. ‎also‎, ‎the‎ autocommutator subgroup of g is defined to be‎ ‎$k(g)=langle[g,alpha]|gin g‎, ‎alphain arangle$‎, ‎which is a‎ ‎characteristic subgroup of $g$ containing the derived subgroup‎ ‎$g'$ of $g$‎. ‎a group is defined...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 1984

ISSN: 0021-8693

DOI: 10.1016/0021-8693(84)90041-3